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Equation of State for Complex Liquid Mixtures from
Surface Tension
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The present work shows a successful extension of previous studies to molecular
liquids for which the second virial coefficients are not known. Recent advances
in the statistical mechanical theory of equilibrium fluids can be used to obtain
an equation of state (EOS) for compressed normal liquids and molten alkali
metals. Three temperature-dependent quantities are needed to use the EOS: the
second virial coefficient, B ( T ) , an effective van der Waals covolume, b ( T ) , and
a scaling factor, a(T). The second virial coefficients are calculated from a
correlation that uses the surface tension, Ytr, and the liquid density at the triple
point. Calculation of a(T) and b ( T ) follows by scaling. Thus, thermodynamic
consistency is achieved by use of two scaling parameters (ytr ,ptr). The correla-
tions embrace the temperature range T t r <T< Tc and can be used in a predic-
tive mode. The remaining constant parameter is best found empirically from ptr

data for pure dense liquids. The equation of state is tested on 42 liquid mixtures
The results indicate that the liquid density at any pressure and temperature can
be predicted within about 5%, over the range from Ttr to Tc.

1. INTRODUCTION

The mechanical behavior of compressed liquids, i.e., the equation of state,
is needed for the design and analysis of many processes at high pressures.
Many equations of state, dating back to the work of Tait over 100 years
ago, have been proposed for the correlation and prediction of the P-V-T
properties of compressed liquids [1-6]. However, almost all require at
least a few measurements at high pressures for any particular liquid of
interest; many also require knowledge of the critical constants. For example.
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many empirical equation of states are based on some variation of the fact
that the isothermal bulk modulus (reciprocal compressibility) is very nearly
linear in the pressure over the entire range from the vapor-pressure curve
to the freezing line. Thus, each p-p isotherm involves at least four con-
stants: the pressure P and the density p at some reference state and two
constants needed to characterize such a linear relationship. Unfortunately,
all four constants are temperature dependent.

Recent works on the statistical-mechanical theory of the equation of
state for fluids has yielded accurate results for pure liquids and for mercury
[7, 8]. The minimum information needed to reduce the P-V-T surface to
a single curve is the surface tension and the liquid density at the triple-
point temperature. From these two properties, three temperature-dependent
parameters are obtained, an effective van der Waals covolume b( T), a scaling
factor a ( T ) , which is equivalent to the contribution to the second virial
coefficient B(T) from just the repulsive branch of the intermolecular force,
and B(T) itself. In addition to B, b, and a, one temperature-independent
constant that is characteristic of the particular substance is needed. It
should be noted that the accuracy is not necessarily enhanced by greater
complexity.

We tested the equation of state for 42 liquid mixtures. The results
show that the density of the liquid mixtures can be predicted within about
5 % at any temperature and pressure.

In short, the purpose of this work was to correlate and to predict the
behavior of complex liquid mixtures based on the surface tension and the
liquid density at the triple point. An empirical feature is incorporated in
the corresponding-states principle, which enables us to describe the ther-
modynamic properties of mixtures at all liquid densities, temperatures, and
compositions.

2. EQUATION OF STATE

We consider the statistical-mechanical equation of state derived by
Song and Mason [9], which is based on the Week-Chandler-Anderson
(WCA) perturbation theory for the condensed state. The derivation begins
with the equation relating the pressure to the pair distribution function,
g(r),

where P is the pressure, p is the density, kT is the thermal energy per
molecule, and du/dr is the derivative of the intermolecular potential function
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with respect to the distance r. Upon applying the perturbation scheme of
the WCA method to the potential function and working out a correction
for attractive forces, the equation of state reads [10]

where the new corresponding-states principle has the form

and where Z = P/pkT is the compressibility factor. Here G(bp) is the average
pair distribution function at contact for equivalent hard convex bodies that
still have the pairwise additivity of the intermolecular forces as in g(r). The
many-body nature of the system may be contained in G(bp] [10]. The
value of B2 can be calculated by integration if the form of the potential
function is known, a is the contribution of the repulsive part of the poten-
tial function to the second virial coefficient, and it takes care of the softness
of the potential function, b is the analogue of the van der Waals covolume.
Both a(D and b(T) can be calculated by integration if the potential func-
tion is known. G(bp) -1 is a function of bp only and satisfies corresponding
states, varying linearly with slope F over the entire range of temperature
from the freezing line up to the critical point. The functional form of
G(bp) - 1 implies that, according to corresponding states, all P-V-T data
collapse onto a single line. The value of F, determined from P-V-T data
by iteration, along with B2(T), a(T), and b(T), characterize the thermo-
dynamic properties of particular systems.

According to Eq. (2), from knowing the form of the potential function,
the thermophysical properties of both spherical and nonspherical fluids can
be characterized over the entire range of temperatures including the com-
pressed liquid state. The Lennard-Jones (12-6) potential function repro-
duces the thermophysical properties within experimental uncertainty [10].
More accurate potential functions based on a Hartree-Fock dispersion
interaction potential are also available [10]. However, it is not the purpose
of this paper to use any of these functions. Rather, it is shown that the idea
of minimal as well as practical input data for analytical equations of state
can be extended nicely to include other thermodynamic functions, e.g., the
surface energy.

The method we follow here is to use an energy function involving the
surface tension as a scaling parameter for the calculation of the tem-
perature-dependent constants, B2(T), a(T), and b(T), in Eq. (2). This is



based on the fact that the surface tension is a measure of the cohesive
energy density and that the range of the effective forces are not larger than
the molecular dimension [11, 12]. A suitable form of the energy function
is yP -2 /3N1/3, where y is the surface tension, p is the molar liquid density,
and N is Avogadro's number. Compared with the thermal energy, the
reduced form of the function, with the triple point as a reference tempera-
ture, takes the form y t r p t r

- 2 / 3 N 1 / 3 / R T , where RT has, its usual meaning, and
ptr is the molar liquid density at the triple point. The term y t r p t r

- 2 / 3 N 1 / 3 / R
is referred to as Tref. It should be emphasized that the reference temperature
is not an essential choice, but merely a convenient one. Our final correlation
scheme is self-correcting. The normal freezing temperature would probably
work as well. Apparently the shape effects described by w, the acentric
factor, affect the ytr and ptr in such a way as to tend to compensate for their
influence on B2(T).

The central idea is to use second virial-coefficient data to determine
the parameters for the corresponding states that are related to the scaling
parameters, ytr and ptr. The resulting correlation can then be used to
calculate B2(T), which is quite universal. It is remarkable that one func-
tional ( B * ) does suffice for all nonpolar liquids, where B * = p t r B ( T ) . The
values of B( T) are correlated as
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with

where Tf is the freezing temperature. This correlation gives good second
virial coefficients for different classes of substances up to the critical tem-
perature Tc [7, 13]. It should be mentioned that T* is original and is
responsible for a promising correlation, allowing the second virial coef-
ficient to be calculated accurately.

For Lennard-Jones fluids, Song and Mason [14] have obtained rela-
tionships that allow the calculation of a (T) and b(T), taking into account
that they depend only slightly on the details of the shape of the potential
function. The procedure is based on the fact that the reduced quantities of
a/vB and b/vB are almost universal functions of the reduced function of
T/TB. In practice, this requires Eq. (4) to be solved for the reduced Boyle
temperature and the reduced Boyle volume, so that
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and

with

The characteristic free parameter of the fluids in the equation of state, F,
can be calculated from the two scaling constants at the freezing tempera-
ture (yt and pt) in a single iteration because it is just a correction factor.

The present correlation procedure can be generalized to mixtures of
any number of components; a formal extension of Eq. (2) to mixtures can
be written as [15]

where xi and Xj are mole fractions, F-1 = 1 +0.226*Fp* and G-1 =
1 —b*Fp*. a.*(T) and b*(T) are predicted over a similar wide temperature
range, where y.*(T) = a.(T) ptr and b*(T) = b(T) ptr. The simplest combin-
ing rules for predicting unlike-molecule interactions from the like-molecule
interactions are a geometric mean for y and an arithmetic mean for plt.
Thus, our combining rules would be

and

Once (y t r) i j and ( p t r ) i j are known, the values of aij, bij, and By follow from
Eqs. (4)-(7) as for pure substances. The quantities Gij and Fij for mixtures
have been given elsewhere [15]. We had to test the combining rules, given
by Eqs. (8b) and (8c), on compressed liquid mixtures. The results show
that the density of liquid mixtures can be predicted within 5%. These
results are shown in Tables I and II. The density and surface tension data
were taken from Refs. 11, 17, and 18.
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Table I. Volumetric Behavior of 0.5 Benzene + 0.5 Hexane Liquid
Mixture; Molar Volume, cm 3 -mol - 1

T ( K )

343.15

353.15

373.15

P (bar)

15.0
20.0

25.0

30.0
35.0
40.0
45.0
50.0

100.0
150.0
200.0
250.0
300.0
400.0

15.0

20.0

25.0
30.0

35.0
40.0

45.0
50.0

100.0
150.0
200.0
250.0
300.0
400.0

15.0
20.0
25.0

30.0

35.0
40.0
45.0
50.0

100.0
150.0
200.0
250.0
300.0
400.0

COSTAIDa  Calc.

118.39 115.84

118.25 115.79

118.10
117.96

117.82

117.68
117.54
117.40

116.13
114.98
113.94
112.99

112.11
110.53
120.30
120.14

115.73

115.68

115.62

115.56
115.51
115.45
114.92
114.42
113.95
1 1 3.5 1
113.09
112.31
117.14
117.07

119.98 117.01
119.82 116.94
119.66
119.51

116.87
116.81

119.36 116.75
119.21 116.68
117.80 116.07
116.55
115.42
1 14.40

115.50
114.97
1 14.46

113.45 133.99
111.77 113.12
1 24.49

124.29
124.08
123.88
123.69
123.49
123.30
123.12
121.39
119.89
118.55
117.35
116.26
114.34

119.82
119.73
119.64

119.56

119.47
119.39
119.30
119.22
118.43
117.70
11 7.03
116.39

115.80

114.74

% Dev.

2.20

2.13

2.05

1.97
1.90
1.84
1.76
1.69
1.06

-0.07
-0.01
-0.46

-0.87
-1.58

2.70

2.63
2.54

2.47
2,38
2.32
2.24
2.17
1.49
0.91
0.39

-0.05
-0.47
-1.19

3.90
3.81

3.71
3.62
3.54
3.45
3.36
3.28
2.50
1.86
1.30
0.83
0.40

-0.35
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Table I. (Continued)

T (K.) P ( b a r )

393.15 15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0

100.0
150.0
200.0
250.0
300.0
400.0

COSTALDa

129.30
129.03
128.77
128.51
128.26
128.01
127.77
127.53

125.37
123.53
121.93
120.51
119.24
117.04

Calc.

122.62
122.51
122.40
122.29
122.18
122.07
121.97
121.86
120.86
119.95
119.11
118.34
117.63
116.34

% Dev.

5.45
5.31
5.21
5.09
4.98
4.87
4.56
4.66

3.73
2.99

2.37
1.84
1.37
0.60

aCorresponding-states liquid density [16].

Table II. Volumetric Behavior of Benzene + Octane Liquid Mixtures
at 373.15 K and Six Compositions; Molar Volume, cm 3 . mol - 1

x(C6H6)

0.0

0.20

P (bar)

15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0

100.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0

100.0

COSTALDa

179.15

178.93
178.71

178.50

178.28

178.07

177.86

177.66

175.72

162.57

162.37

162.17

161.98

161.78

161.59

161.40

161.22

159.46

Calc.

180.24

180.14

180.04
179.94

179.83

179.73

179.63

179.53

178.57

163.08

162.99

162.90

162.80

162.71

162.62

162.54

162.45

161.61

% Dev.

-0.60
-0.67
-0.74
-0.80
-0.86
-0.92
-0.96
-1.04
-1.60
-0.31

-0.38
-0.45
-0.50
-0.57
-0.63
-0.70
-0.76
-1.33
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Table II. (Continued)

x(C 6 H 6 )

0.40

0.60

0.80

1.0

P (bar)

15.0

20.0

25.0

30.0

35.0

40.0

45.0
50.0

100.0
15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

100.0
15.0
20.0

25.0

30.0

35.0

40.0

45.0

50.0

100.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

100.0

COSTALDa

146.20

146.03

145.85

145.68

145.51

145.34

145.17

145.01

143.45

130.06

129.91

129.76

129.61

129.46

129.32

129.17

127.69

127.69

114.16

114.03

113.90

113.78

113.66

113.54

113.42

113.30

112.18

98.49

98.39

98.29

98.19

98.10

98.00

97.90

97.81

96.91

Calc.

145.97

145.89

145.81

145.73

145.65

145.57

145.50

145.42

144.69

128.93

128.86

128.80

128.73

128.66

128.60

128.53

127.83

127.83

112.01

111.95

111.89

1 1 1 .84

111.78

111.72

111.67

1 1 1 . 6 1

111.08

95.25

95.20

95.15
95.11
95.06

95.01
94.97

94.92

94.48

% Dev.

0.16

0.10

0.03

-0.03

-0.10

-0.16

-0.23
-0.28

-0.86
0.88
0.82

0.75

0.68

0.62

0.56

0.50

0.45

-0.11

1.92
1.86

1.80
1.74

1.62

1.63

1.57

1.51

0.99

3.40

3.35

3.30

3.24

3.20

3.15

3.09

3.01

2.57

aCorresponding-states liquid density [16].



3. RESULTS AND DISCUSSION

The previous statistical-mechanical theory would take e and rm (e is
the depth of the potential well and rm is its minimum position) based on
the experimental values of B2(T), the second virial coefficient of the vapor
[9]. However, since B 2 ( T ) would not be known experimentally for many
compressed liquids of interest, another method for finding a suitable scaling
factor is needed. The present work shows how the equation of state of a
compressed liquid can be given a statistical-mechanical basis: this method
is needed for applications to real molecular liquid mixtures. Binary com-
pressed liquid mixtures have been tested in the temperature range 100 to
500 K, the pressure range 15 to 400 bar, and different compositions, for a
total of 5292 data points, where 110 points are shown in Tables I and II.
Knowledge of just the ytr and Ptr is sufficient to construct the entire equa-
tion of state and, hence, other thermodynamic parameters of liquids. No
"mixing rules" are needed. The P-V-T values were calculated from Eq. (8a)
by the use of Eqs. (4)-(7), (8b), and (8c). The agreement is fairly good. We
repeat that Eq. (4) would be needed when the values of B 2 ( T ) are not
experimentally known for most of the compressed liquids of interest.

The most important aspect of the present work is that the linear
b*Fp*(p*=p/ptr) dependence of the G-1 of any liquid can be given a
strong basis in statistical mechanics. Moreover, G can be calculated if Ytr

and Ptr are known. The present work also shows to what extent the results
for compressed liquids can be extended, namely, from freezing up to the
critical temperature. This work shows useful applications to real molecular
liquid mixtures. The procedure has been tested on liquid mixtures ranging
in complexity from benzene + n-hexane to benzene + n-octane.

In summary, although theory indicates that G is a function of a single
variable b*p* for pure substances, the fact that G-1 is nearly linear in b*p*
is empirical, and the numerical value of F must be found from ptr. Further-
more, our equation of state appears to give accurate P-V-T results at all
pressures and temperatures. It is also simple in form and easy to use in
practice.
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